Printed Pages - 5 Roll No.:....

322453(22)

B. E. (Fourth Semester) Examination, April-May 2020

(New Scheme)

(CSE Engg. Branch)

DATA STRUCTURES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each unit is compulsory. Attempt any two parts from (b), (c) and (d) each question.

Unit-I

1. (a) Explain efficiency of an algorithm in terms of space and time complexity.

PTO

	(b)	Write an algorithm to add two polynomials respresented using linked list.	7
	(c)	A 2D array dymed as [1 7] [1 5] require four (4) bytes of storage space for each element if the array is stored in row major ferm, then calculate the address of element at location [5, 3] where the base address is 400.	7
	(d)	Write an algorithm to insert a new node at the end of singly linked list. Unit-II	7
2.		What do a sentinel element mean? Write an algorithm efor recursive solution to the tower of Hanoi problem for N diss. Also show the diagramatic execution of algorithm via three for N =	2
	(c)	3 dist and count the number of moves.(i) Write the steps to convert any infix expressions to portfix expression.	7
		(ii) Convert the following infix expression into postfix expression.	3

$((A+B)/D)\uparrow$	(E-F)*G

(d) What is stack and also explain Push and POP operation of stack with algorithm and diagram.

Unit-III

- 3. (a) How many number of nodes a complete binary tree has for the depth/level of 5?
 - (b) Explain Huffman algorithm using following example: 7

Item : A B C D E F G : 15 10 5 3 7 12 25

(c) The following letters are inserted in order into an empty Binary Search Tree:

S, T, P, Q, M, N, O, R, K, A, B

Draw the Tree T and find the inorder and post order traversal of Tree T.

(d) Explain the array and linked list representation of binary tree.

unit-IV

4. (a) Explain path and adjacency matrix in graph.

7

7

2

7

	Explain	warshalls algorithm for finding shortest path,
		the following graph.

- (c) (i) Write the algorithm to traverse the graph using BFS (Breadth First Search).
 - (ii) Trace the graph using BFS to find shortest path from \underline{A} to \underline{E} . Assume each edge of lenth 1.

- (d) (i) Explain spanning tree along with its properties.
 - (ii) List down the application of spanning tree. 2

Unit-V

- 5. (a) What is the time complexity of Binary Search? 2
 - (b) Explain the AVL search tree.
 - (c) Write an algorithm for insertion sort. Also trace the following elements using same.

7

7

(d) What is flash function? Explain it through an example. 7

3